The Mackey Machine for Crossed Products by Regular Groupoids. I
نویسنده
چکیده
We first describe a Rieffel induction system for groupoid crossed products. We then use this induction system to show that, given a regular groupoid G and a dynamical system (A,G,α), every irreducible representation of A⋊G is induced from a representation of the group crossed product A(u)⋊Su where u ∈ G(0), A(u) is a fibre of A, and Su is a stabilizer subgroup of G.
منابع مشابه
Crossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids
The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....
متن کاملActions of vector groupoids
In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion...
متن کاملTensor Products and Homotopies for Ω-groupoids and Crossed Complexes∗
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product...
متن کاملJ ul 2 00 9 NON - HAUSDORFF SYMMETRIES OF C ∗ - ALGEBRAS
Symmetry groups or groupoids of C∗-algebras associated to nonHausdorff spaces are often non-Hausdorff as well. We describe such symmetries using crossed modules of groupoids. We define actions of crossed modules on C∗-algebras and crossed products for such actions, and justify these definitions with some basic general results and examples.
متن کاملAutomorphisms and Homotopies of Groupoids and Crossed Modules
This paper is concerned with the algebraic structure of groupoids and crossed modules of groupoids. We describe the group structure of the automorphism group of a finite connected groupoid C as a quotient of a semidirect product. We pay particular attention to the conjugation automorphisms of C, and use these to define a new notion of groupoid action. We then show that the automorphism group of...
متن کامل